ICMMA 2021

UNIVERSITY

Development of vertical incident sound insulation simulation technology using finite element method

Meiji Institute for Advanced Study of Mathematical Sciences OAya Abe, Haruki Yashiro, Ichiro Hagiwara E-mail : aya_abe@meiji.ac.jp

Self- introduction

First, I took my bachelor's degree in research about street width on old maps of the Edo period by using GIS. After taking my master's degree in research about historical image analysis of cityscapes, I worked as a software engineer, and after a period of devotion to raising children, returned to work as a part-time employee at the Japan Patent Office.

From 2016, I start working on engineering application research of origami structures at Hagiwara Laboratory, Meiji University (Application of pairing-origami to aluminum cans, Foldable transport boxes for fruits, etc.)

Contents

The calculation of the transmission loss of the sound insulation plate by FEM had to be corrected with the theoretical value, so far. In this report, we examined a method to obtain the separated input / reflected sound pressures from the speed condition given to the vibration plate and the sound pressure close to the sound insulation plate. The validity is confirmed by evaluating the sound insulation characteristics of a flat plate with theoretical values. Moreover, we consider using it for evaluation of more complicated shapes.

> Introduction video about origami engineering https://voutu.be/Ov3aFNS9VS4

Background

Honevcomb panels for various industrial products as highly rigid and lightweight structures

Building floors Aircrafts

Trains, etc ...

New origami honeycomb

(Truss score panel, etc.)

Solar heliostat

Truss score panel

Solar cell panel

Truss core panels are 8 times more rigid than equal weight flat plates.

Purpose of research

1 By the invention of origami engineering method

- Possible to manufacture panels with cores with a high aspect ratio.
- New high-efficiency and precision acoustic analysis method

Applying the truss score panel to train's floors as sound insulation walls

2 Increasing demand for sound reduction in the manufacturing industry

Attention to unprecedented acoustic metamaterials

Topological optimization analysis system is effective for development Aiming to develop new metamaterials

- 8 Highly efficient and highly accurate evaluation of acoustic characteristics
- Increase versatility by extending sound insulation characteristic analysis to sound absorption characteristic analysis

An example of origami honeycomb core (vertical core) https://youtu.be/-9uw4ljj84o

Honeycomb structures used for trains

Enlarged photo of honeycomb panel

Application of origami engineering to railway vehicles and automobiles

節点数:7725(音響部分) 要素数:4880 (空間用六面体)

228 (無限要素5次)

Various acoustic metamaterials

Best Location of Frame

Image of topological optimization analysis

有限要素、無限要素による高速道路周辺計算モデル

防音シミュレーション

Reproduce the acoustic metamaterial with original method of origami honeycomb core

Honeycomb with changing cross-sectional shape can be folded from one flat plate.

Definition of transmission loss $TL = 10log_{10} \left(\frac{|p_{in}|^2}{|p_{out}|^2} \right) = 20log_{10} \frac{|p_{in}|}{|p_{out}|}$

In the sound source room (the left side),

Sound pressure value is combined with the theoretical solution of the wave equation.

Separated into traveling wave pressure p_{in} and backward wave pressure $p_{reflect}$.

Separation verification of incident wave and reflected wave

FEM calculation using COMSOL Multiphysics ®

Same conditions as previous research

The right end of the acoustic tube is non-reflective

The sound pressure observation point is 1 mm in front of the plate in the x-axis direction.

Output Series Comparison of TL with equal mass on 3 different core heights

